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Abstract

The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the short-
age of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted
kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy
for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors
associated with experimental protocols that may shed light on the future development of kidney bioengineering and we
discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial
renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-
dimensional and four-dimensional printing in kidney tissue engineering.
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Introduction In recent years, decellularization technology has
emerged as a promising field in the field of regener-
ative medicine [5-7]. Decellularized scaffold derived
from a whole organ has the advantage of providing
structural integrity of tissue, as synthetic and natural
polymers cannot replicate accurate spatial organiza-
tion of complex cellular architecture as is found in the
native kidney tissue [8]. The use of a decellularized
kidney scaffold is based on the mechanical and bio-
logical property of the extracellular matrix (ECM),
which can maintain natural cellular architecture
and some residual molecules that may enhance
recellularization, differentiation and proliferation of the
decellularized cells [9-11].

The kidney has a function in the filtration and excre-
tion of waste products and excess material from the
blood in addition to performing metabolic, hemody-
namic, immunologic and endocrinologic roles [1].
Patients who undergo dialysis have impaired renal func-
tion when compared with people in the general pop-
ulation [2]. Although renal replacement therapy (RRT)
may be more effective than dialysis, a shortage of organ
donors is the main obstacle to restoration of patient
quality of life. In European countries such as Austria,
Norway, the Netherlands and the United Kingdom, the
number of patients older than 65 years requiring RRT
has increased significantly over time, whereas the
number of actual renal transplants did not match the

demand [3]. In North America, approximately 100,000 Perfusion methodology in different species

patients are awaiting RRT; the mortality rate is 5% to
10% for patients on the waiting list, and approximate-
ly 40% of transplant recipients will die or lose graft
function within 10 years of transplantation [4].

The scaffold derived through perfusion should contain
a vascular tree that facilitates i virro perfusion and
reconnection to the blood stream, which will provide
nutrient and oxygen delivery in addition to removal
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of waste in the tissue-engineered construct [12].The
decellularization process of xenogeneic or allogeneic
donor kidneys, using cell-lysing solutions perfused
through the renal vasculature, has been demon-
strated in recent years by a number of techniques.

In the rodent, Bonandrini et al. [13] were able to
overcome the time-consuming perfusion method by
using sodium dodecyl sulfate (SDS) alone as a lysis
buffer. Transmission and scanning electron micros-
copy showed preservation of the three-dimensional
(3D) architecture of blood vessels, glomeruli and tubuli
and used a novel evaluation method of micro-
computerized tomography (micro-CT) scanning to
demonstrate the integrity of the vascular network. For
a systematic evaluation of scaffold preparation, Caralt
et al. [14] developed a histologic scoring system based
on two semi-quantitative grading scales, which were
used to evaluate biochemical characteristics of
decellularized rat kidneys, with the use of two proto-
cols using 1% Triton X-100, 1% Triton X-100/0.1%
SDS. The scoring system evaluated preserved renal
microarchitecture and matrix-bound basic fibroblast
growth factor and vascular endothelial growth factor.
A combined and sequential detergent approach was
used to procure intact rat kidney ECM by Yu et al.
[15]. The team developed a new protocol to gener-
ate rat kidney scaffolds by perfusion using continuous
detergent through the infrarenal abdominal aorta, with
heparin, Triton X-100, deionized water and SDS. Eval-
uation of this combination perfusion approach showed
good retention of both a range of cellular cytokines
and an intact architecture of the vascular tree. He-
matoxylin and eosin staining and electron microscopy
were used to confirm the clearance of nuclei in the
kidney structure; Periodic acid-Schiff and Masson’s
staining define the number of positively stained struc-
tures present as without architectural damage.

In the larger porcine kidney, Orlando et al. [16]
applied hypotonic distilled water that induced cell swell-
ing and consequent blast of cell membrane, followed
by perfusion with SDS. Methenamine silver staining
was performed to estimate the kidney structure of glo-
merular basement membrane, and the degree of cell
clearance was also evaluated by staining of glomeru-
lar transmembrane proteins, which showed negative
results. To better evaluate the influence of perfusion
pressure, a Millar MPC-500 Mikro-Tip pressure trans-
ducer catheter and MPVS-400 signal conditioning
hardware were used, which showed a good relation-
ship between pressure an increased flow of the
decellularization lysis solution. In a protocol that also
used SDS alone as the lysis buffer, Sullivan et al. [17]
compared the effectiveness of the concentration of
single perfusion regimen by using a high-throughput
system designed and constructed to provide decellu-
larized scaffold from porcine kidney. Results showed

that the SDS-treated decellularized scaffolds were non-
cytotoxic to primary human renal cells and that 0.5%
SDS was the most effective detergent, with <50 ng
remnant DNA/mg dry tissue. In addition, glomeru-
lar and tubular structures in the cortex-medulla regions
of the ECM were well preserved, and an intact bound-
ary structure between the vascular and filtrate collection
systems was determined by means of CT imaging. In
attempting to mimic a procedure that could be applied
to human kidney, Nakayama et al. [18] perfused rhesus
monkey kidney with 1% SDS at 4°C and found this
to be the most effective regimen for preservation of
native cellular architecture and to cause minimal
changes in morphology.

Discarded human kidneys are a desirable source
of renal ECM, and their application for tissue engi-
neering may be more clinically compatible than kidneys
derived from other species. The perfusion of a dis-
carded human kidney is performed by connecting the
renal artery and the ureter and perfusion with a 0.5%
SDS solution [16,19]. After perfusion, the matrix is
rinsed with phosphate-buffered saline (PBS) to reduce
the toxic effect of detergent. Under these condi-
tions, the ECM framework retained its architecture
and biochemical properties, and this process has the
advantage of cell clearance despite radical glomeru-
losclerosis and interstitial fibrosis. Another method
achieved clearance of human leukocyte antigens, con-
firmed by immunostaining, which is needed to prevent
organ rejection and essential for positive clinical out-
comes in the future [20]. A further study that used
discarded human kidneys confirmed the preserva-
tion of glomerular microarchitecture, vascular
mechanical properties and retention of cytokines and
growth factors essential for recellularization [21].

Multiple techniques combined in the perfusion process

The addition of new solutes to kidney perfusion so-
lutions and a systematic comparison of the pros and
cons of different solutions may allow an improve-
ment in decellularization methodology. Biological and
physical techniques are both used in some protocols
to decellularize the kidney. Caralt et al. [14] used
0.02% trypsin, 0.05% EGTA, 1% Triton X-100 to
decellularize the kidney; however, it should be noted
that a trypsin enzyme solution may cause structural
damage and loss of growth factors. DNase has also
been used in many protocols to help clear residual
nucleic acid [17,21]. Wang et al. [22] described a pro-
tocol using different detergents, 1% SDS, 1% Triton
X-100, 1% peracetic acid (PAA) and 1% sodium de-
oxycholate INaDOC) perfused through the renal artery
of the kidney and followed by a rinsing step with PBS.
On comparison, the SDS-treated group showed the
most efficient clearance of nucleic acid. However, Triton



X-100, PAA and NaDOC were unable to com-
pletely remove cellular components and xenoantigens
completely, and Triton X-100 and NaDOC have been
reported to disrupt the 3D micro-structure of the ECM
scaffold [23]. A recent finding is that Triton X-100
may effectively clear residual SDS, which may ensure
that the scaffold shows no or reduced cell cytotoxic-
ity. Kawasaki et al. [24] used a novel detergent, sodium
lauryl ether sulfate (SLES), and on examination of the
cell microarchitecture and glycosaminoglycans (GAG)
content showed better preservation of ECM with SLES
than with SDS. In addition, the use of SLES was as-
sociated with less platelet adhesion and a relatively low
inflammation, which over time may promote
recellularization. Freeze-thaw cycles were also used to
help decellularization protocols [22,25,26]. A single
freeze-thaw cycle can decrease immune responses such
as leukocyte infiltration in the vascular structure of
ECM scaffolds, which may present a hazard for
decellularization and subsequent use of the scaffold
[27]. Osmotic shock has the advantage of disrupting
DNA-protein interactions, effectively lysing cells, al-
though it is ineffective in removing cellular residues
[16,26,28,29]. A physical pressure method may also
be applied by a constant pressure of 40 mm Hg during
the perfusion step. With the use of 1% SDS during
perfusion, the study reported an increase in vascular
resistance during decellularization and a decrease after
re-endothelialization. This may be explained by the ob-
servation that microemboli and immature vascular beds
were found in heart and lung. Immunohistochemi-
cal staining confirmed the presence of key ECM
components such as laminin and collagen. The use of
higher perfusion pressure, for example, 120 mm Hg,
did not cause increased albumin or glucose loss in
bioengineered kidneys [5,29,30].

The main goal of organ decellularization is the
removal of all cellular material without adversely af-
fecting matrix component, biologic activity or
mechanical integrity [31]. However, it is difficult to
achieve complete organ decellularization, and most
ECM scaffolds contain residual DNA and other cy-
toplasmic components [32]. To date, there is no
accepted consensus view on a standardized proce-
dure. However, a broad view has been proposed, based
on the findings of other studies using decellularized
tissue, and can be summarized. The ECM should
contain less than 50 ng of DNA per milligram of ex-
tracellular matrix dry tissue, any residual DNA
fragments should be less than 200 bp in length and
the ECM should lack any visible nuclear material as
confirmed by standard hematoxylin and eosin or 4’-
6-diamidino-2-phenylindole (DAPI) staining [33-35].
An overview of the paradigm that summarizes recent
strategies for producing decellularized ECM from
kidney is shown in Table 1; the typical procedure for
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decellularization of human kidney is presented in
Figure 1.

Factors associated with kidney decellularization and
recellularization methods

Any perfusion technique that uses exposure of tissue
to chemicals or pressure to remove cellular compo-
nents may disrupt ECM structure [5-7,30,36,37].
Non-ionic detergents, for example, Triton X-100, is
less effective than SDS [38-42] and is commonly used.
Differences in effective lysis may occur, depending on
the tissue, and may be more effective in removing cel-
lular components, depending on tissue thickness, and
may cause some disruption of microstructure and loss
of GAG. Ionic detergents, for example, SDS, whose
function is to cause cell lysis and remove nucleic mem-
branes, will denature scaffold proteins unless the lysis
conditions are carefully controlled. Although SDS can
effectively remove residual nuclear matter and cyto-
plasmic proteins from dense tissues, it may adversely
disrupt ultrastructure, reduce GAG content and growth
factor levels, and the degree of unwanted ECM damage
may depend on tissue thickness [43—47]. Interest-
ingly, the age of the tissue donor appears an important
factor in kidney recellularization efficiency in which
cellular repopulation was greatest with scaffolds from
the youngest kidney donors compared with juvenile
and adult rhesus monkey kidney [48]. Nakayama et al.
[18] showed that the temperature of the perfusion so-
lution is another factor that may affect decellularization,
with the use of SDS at 4°C to be most effective in
preserving native kidney architecture [18]. T'suchiya
et al. [49] developed a protocol to test several pH con-
ditions (pH values tested: 8, 10, 12) and showed that
lung tissues decellularized at pH 8 retained the great-
est preservation of tissue architecture and the least
ability to induce a host immune response. As the kidney
and lung have a similar organogenesis [50], further
research should be performed to explore and derive
the optimum pH value for decellularization of the
kidney.

Other factors that may influence the quality of
derived ECM include the effect of freezing and thawing
and sterility. The effect of freeze/thaw cycles on native
and decellularized whole porcine kidneys was studied
in the absence of cryoprotectants, and results indi-
cated that the elastic modulus of native kidneys was
reduced [51]. Although various physical and chemi-
cal factors may damage the scaffold during the process
of a whole-organ decellularized kidney, it is essential
that a pathogen-free scaffold is provided for trans-
plantation. The choice of sterilization method, however,
has an impact on scaffold quality. Clinically, com-
monly used sterilization methods such as pressurized
steam and dry heat have the potential to cause protein



Table 1. Critical decellularization strategies.

Time
Author Species Decellularization strategy consumed Main decellularization result Sterilization choice Reference
Nakayama et al.  Rhesus PBS washed twice; either 1% (v/v) SDS at 4°C or 7t0l10 days Removal of cellular material; In 10% (v/v) [18]
monkey Triton X-100; then washed with PBS. preservation of native penicillin/streptomycin.
expression patterns of ECM
proteins; a decrease in the
compressive modulus of ECM.
Orlando et al. Human Starting with distilled water at 12 mL/min for 12 h; 60 h plus 95% of DNA was removed; ECM  Not mentioned [19]
0.5% SDS for 48 h; finally using PBS rinsed for 5 days retained its architecture and
5 days at 6 mL/min. biochemical properties; vascular
network is intact.
Song et al. Sprague-Dawley Perfusion of 1% SDS, then 1% Triton X-100 at a 108 h Preserved the structure and 10,000 U/mL penicillin G, [29]
rats constant pressure of 30 mm Hg. composition of the renal ECM 10 mg/mL streptomycin and
and arterial elastic fiber 25 pg/mL amphotericin B.
network.
Sullivan et al. Porcine 10 USP units/mL sodium heparin, then 0.5% SDS 36 h <50 ng DNA/mg dry tissue; intact  Exposed to 10.0 kGy gamma [17]
(Yorkshire pigs) and 1% Triton X-100/0.1% ammonium microarchitecture. irradiation.
hydroxide, then 0.0025 w/w% DNase with
10 mmol/LL magnesium chloride, using a
high-throughput system to perfuse.
Yu et al. Rat 8 mL/min in the following order:50 U/mL heparin 28h The kidney scaffolds lose renal 100 U/mL penicillin and [15]

in 0.01 mol/L. PBS for 30 min; 0.1% Triton
X-100 for 3 h; deionized water for 30 min; 0.8%
(v/v) sodium lauryl sulfate (SDS) for 3 h; and
deionized-water for 24 h.

cells but keep normal vascular
tree and continuous
extracellular matrix.

100 mg/mL streptomycin.
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Figure 1. Flow chart illustrates the decellularization method of a typical discarded human kidney, using gradual color fade to note the

extent of decellularization.

denaturation [52]. Other methods of sterilization in
ECM such as gamma irradiation and electron beam
can change the mechanical properties of ECM [53-56].
Although chemicals such as ethylene oxide gas have
the advantage of not destroying common cytokines,
it can also change mechanical properties of the ECM
[42,57]. Fortunately, PAA and supercritical carbon
dioxide are emerging as promising alternative choices
of sterilization. PAA has the advantage of effective
removal of bacteria, fungi and spores, without causing
disruption of ECM proteins [58]. The use of super-
critical carbon dioxide as a sterilization agent has re-
ceived some attention because it may cause multi-log
reductions in bacterial and viral products within the
ECM, although it may cause minor changes of me-
chanical properties when compared with PAA [59].

Although we have many ways (hematoxylin and
eosin, DAPI staining, terminal deoxynucleotidyl trans-
ferase staining, corrosion cast model) to evaluate the
quality of the scaffold, it may be necessary to system-
atically define an algorithm of properties to optimize
a protocol of decellularization that will ultimately form
a gold standard for clinical application. A standard and
strict evaluation method is clearly required. For
example, Caralt et al. [14] used histologic scoring
systems to quantify fundamental characteristics of
decellularized rodent kidney, and Song et al. [29]
applied a histology-based morphometry protocol to
assess the microarchitecture of acellular kidney scaf-
folds [60]. For the scaffold component, Peloso et al.
[21] applied a method for evaluation of 40 key growth
factors (GFs) after decellularization with the use of
a glass chip-based multiplex enzyme-linked immuno-
sorbent assay array and iz vitro immunofluores-
cence. There is no doubt that a systematic scoring
evaluation strategy can facilitate and optimize the
decellularization process; thus, further development
of scaffold evaluation strategies is needed.

For methods supporting recellularization, it is
obvious that different organ sizes of either xenoge-
neic or allogeneic origin require different numbers of
cells [14,17,19,61,62]. In addition, each organ relies
on different conditions such as recellularization per-
fusion rate, temperature, CO, concentration, GFs, and

nutrients [63]. Different cell types also have different
properties and cell seeding within the kidney tubules,
and peritubular capillaries through the vascular tree
or ureter result in different cell distribution. Seeding
through the renal artery is a routine method, which
may achieve a balanced distribution of cells, and more
than 97% attachments have been reported by
Bonandrini et al. In contrast, Caralt et al. [14] pre-
sented a protocol that showed that 50% coverage of
the renal area is attained, and Ross et al. [28] com-
pared seeding methodologies through the renal artery
and ureter, which showed >95% retained versus ~50%
retained, respectively [28]. Very recently, a new
recellularization strategy through the renal artery, fol-
lowed by perfusion of the neonatal kidney cells through
the ureter, has been developed. The technique main-
tains a negative pressure (about 40 mm Hg), after
which the scaffold culture can produce urine iz vitro
and i vivo [29]. Rosines et al. [64] found that hyal-
uronic acid (HA) has the ability to simultaneously
modulate ureteric bud (UB) branching, facilitate
mesenchymal-to-epithelial transformation and to
promote the differentiation of the metanephric mes-
enchyme. The study also showed that UB branching
was dependent on both the concentration and the mo-
lecular weight of HA [64]. Exploring factors affecting
decellularization and recellularization is critical for po-
tential clinical application; these factors are summarized
in Figure 2.

Cell sources for renal scaffold seeding

The ECM scaffold structure is vital to facilitate cell
seeding and construction of organ-like cellular com-
partments [31]. In a routine physiologic state, the
kidney has the potential for relatively low regenera-
tive capacity compared with other organs; the tubular
epithelium has the highest potential for self-renewal
[65,66]. After damage, such as acute tubular necro-
sis, tubular epithelial cells can restore damaged tubules
[67]. Renal adult stem cells express cytokines, for
example, CD24, CD133, CD146 and Pax-2 [68-72].
However, today, we lack a detailed understanding of
the molecular mechanisms for regeneration.
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Figure 2. Summarized factors based on recent studies that asso-
ciated kidney decellularization and recellularization.

For the final aim of recellularization, which is to
generate full kidney function, which includes filtration,
secretion/reabsorption and concentration of urine, con-
structs comprising nephrons and other supportive cells
need to be populated [73]. Based on the current re-
search on scaffold decellularization, the minimal
function of a recellularized kidney is the secretion of
urine by the repopulation of renal medulla cells [31].

Embryonic stem cells (ESCs) are pluripotent cell
sources that can give rise to all three germ layers and
they also have the ability to proliferate to large numbers
without aging. Ng et al. [74] suggested that pre-
differentiation of ESC could increase the chance of
organ-specific differentiation [74]. Furthermore, pre-
differentiated ESC lack the epigenetic modifications
that may enable immediate response to i vitro stimuli
when compared with more differentiated stem cells
or progenitor cell populations [75]. However, there is
an ethical and moral debate concerning the deriva-
tion of ESC in addition to the risk that ESC have the
potential to give rise to teratomas if transplanted into
an undifferentiated environment [76,77]. Bonandrini
et al. [13] used murine embryonic stem (mES) cells
to recellularize the kidney through the renal artery.
mES were produced for recellularization in a bioreactor
for 24 and 72 h with adjusted pressure and applied
in a regimen of perfusion recycling. Differentiation
toward a meso-endodermal lineage was observed. Ross
et al. [28] perfused mES through the artery or

retrograde through the ureter, achieving the first renal
recellularization; the results showed differentiation and
proliferation of seeded cells. The study by Nakayama
et al. [50] suggested that decellularized kidney scaf-
folds have an intrinsic ability to induce human
embryonic stem cell (hESC) differentiation and pro-
liferation into appropriate structures and phenotypes.

Primary tissue or whole-organ—derived cell sources
have a nonimmunogenic property and can rapidly give
rise to mature functional tissue [31]. With the use of
a perfusion-based medium, Caralt et al. [14] per-
fused human renal cortical tubular epithelial (RCTE)
cells in an antegrade pulsatile perfusion regimen
through the renal artery, and the results showed ap-
proximately 50% coverage of the renal area [14].
Human renal cells have also been utilized for seeding
porcine kidney scaffold [17], although the main dis-
advantage of cells from primary tissue is that the
number of cells is limited.

The main advantage of using fetal cells is that they
preserve their proliferative ability while being com-
mitted to a proliferation end point and have less
likelihood than ESC to result in teratomas. Human
amniotic stem cells (HASC) express surface markers
and transcription factors distinctive of ESC [78] and
can proliferate to about 250 doublings and have no
known tendency for tumorigenesis. Song et al. [29]
perfused the scaffold with neonatal kidney cells and
added human umbilical vein endothelial cells
(HUVECG:S) through the ureter. Bioengineered kidneys
produced urine when compared with cadaveric kidney
[29].

Human inducible pluripotent stem cells (iPSC)
have emerged as an ideal source for regenerative med-
icine because they can be derived from autologous
sources, can be produced in large numbers i vizro and
may give rise to either parenchymal or supportive cells
needed for complicated tissue engineering [29,79-83].
However, Hong et al. [84] showed that undifferenti-
ated autologous iPSC can differentiate to mature
teratomas in a dose-dependent manner accompa-
nied by an inflammatory reaction. This is in contrast
to the situation with differentiated iPSC, in which no
evidence of teratoma formation has been reported. For
parenchymatous cells, Song et al. [85] first reported
on the directed differentiation of iPSC to form kidney
cells with podocyte features. Other protocols have re-
ported on the differentiation of iPSC in the pattern
of intermediate mesoderm tubules expressing kidney
proximal tubular markers [86]. For inducers of iPSC,
Araoka et al. [87] discovered two retinoids, AM580
and TTNPB, through high-throughput chemical
screening, and showed them to be efficient and stable
intermediate mesoderm inducers, which achieved rapid
(5 days) and efficient (80% induction rate) interme-
diate mesoderm [87]. We have summarized the
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Author Cell type Cell numbers Inlet choice Basic recellularization result Reference
Ross et al. Mice ESC  Not mentioned Antegrade through Primitive precursor cells populated and [28]
the artery or proliferated within the glomerular,
retrograde through vascular and tubular structures.
the ureter.
Caraltetal. RCTE 40 x 10° Renal artery. Resided on the basement membrane and [14]
formed what appear to be tubular
structures.
Song et al. HUVEC 50.67 x 10°+ 12.84 x 10°  Arterial cannula. Grafts produced rudimentary urine n vitro [29]
and n vivo.
Lam et al. hPSC Not mentioned. Not mentioned. hPSC form tubules that express proximal [86]
tubular markers.
Song et al. iPSC Not mentioned. Not mentioned. The first report of the directed [85]

differentiation of iPS to generate kidney
cells with podocyte features.

principally used cell sources for recellularization strat-
egies in Table 2.

Recellularized scaffold bioreactor strategies and
potential applications

As the final aim, kidney bioengineering in clinical ap-
plication, developing a robust and reproducible
recellularization strategy is a mandatory clinical and
regulatory requirement. Provision of the right condi-
tions with bioreactor systems is essential to recellularize
cells to exact compartments of the kidney ECM scaf-
fold, such that a 3D architecture can develop by cell
proliferation and differentiation to replicate renal func-
tion. The ideal bioreactor should properly mimic the
n vivo environment, deliver nutrients within per-
fused medium and monitor physiological parameters
of tissue development with appropriately defined levels
of sensitivity. Caralt et al. [14] established a perfusion-
based bioreactor from two glass flanges placed against
each at their ends, with a valve and exclude pad for
media sampling. Results for recellularization studies
showed that cells located in the parenchyma or peri-
tubular space and attached to the basement membrane.
Twenty-four hours after infusion of RCTE cells, about
50% of the renal area was recellularized. Song et al.
[29] produced a bioreactor with improved cell deliv-
ery and retention that was achieved when kidney
scaffolds were embedded in a seeding medium and
under a vacuum that generated a pressure gradient
across the scaffold. For monitoring the bioreactor,
Uzarski et al. [88] designed a bioreactor capable of
maximizing cell seeding of small-animal whole-
organ scaffolds and showed preservation of long-
term cell survival. They further developed noninvasive
monitoring capabilities for tracing dynamic statisti-
cal changes within scaffolds by evaluation of
hydrodynamic pressure drop. These bioreactor studies
illustrate some routes to achieving a stable environment

around the scaffold and are a step forward toward ap-
plication for clinical transplantation.

The desirable application of an ECM scaffold is
as a source for organ regeneration; therefore, given the
limited research studies reported, there appears a con-
siderable distance to go and scope for improved
methodologies. Despite the challenges, the ability of
iPSC to recapitulate various diseases helps us under-
stand and model disease at both a molecular and
pathogenic levels [89-93]. The production of induced
iPSC-podocytes and their potential differentiation into
epithelial cells allows an culture strategy that may
promote both quantitative and qualitative modeling
of kidney cell function in specific renal disease phe-
notypes i vitro [94]. Furthermore, iPSC-kidney cells
in a 3D scaffold may act as a whole-organ applica-
tion for high-throughput toxicology screening, studies
of drug distribution and population-based toxicolo-
gy studies, in addition to supporting personalized
medicine [94]. This may help in the situation in which
studies in animal models do not always translate into
successful human response [95]. Thus, further re-
search into kidney scaffold fabrication may not only
reduce the use of animal model experimentation but
also improve the reliability of kidney research models
and progress the field of kidney bioengineering
[4,96-98].

Chip kidney

The basic architecture and functional unit of the kidney
is the nephron. The chip kidney is a novel artificial
construct aimed at mimicking kidney function through
the use of microfluidic devices that can cannulate to
fluid pumps and to detection probes embedded within
specific cell types [1]. Jang and Suh [99] presented a
study of chip kidney; in 2010, when they integrated
a polydimethyl siloxane (PDMS) microfluidic channel
on a porous membrane to culture and analyze the
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function of renal tubular cells. Their results showed
that it was possible to develop a renal tubule system
suitable for i vivo testing, which may have potential
applications in drug screening and in advanced bio-
engineering. Similarly, Gao et al. [100] reported culture
conditions of human renal proximal tubule epitheli-
al cells (RPTECs), which were able to establish a basic
structure and environment to support cell prolifera-
tion. Jang et al. [101] explored factors such as fluid-
shear-stress, which may affect the translocation of
aquaporin-2 and the reorganization of the actin cy-
toskeleton inside the renal tubular epithelial cells.
Recently Jang et al. [102] described a protocol that
showed proximal tubule-on-a-chip may have an ap-
plication to toxicology research, using primary human
kidney proximal tubular epithelial cells to construct
a “kidney-on-a-chip”. The application in toxicology
appears promising, and other systems have been de-
veloped previously in this field [103—-105]. It addition,
Choucha-Snouber et al. [105] presented a co-culture
system of liver-kidney, a two-organ interaction chip
using micro-fluidics, which studied the interaction
between both organs and noted the development of
systemic multi-organ interactions. Very recently
Maschmeyer et al. [106] established a micro-
physiological system capable of preserving the specific
functions of four organs after nearly 28 days in co-
culture. In addition to toxicology research, the kidney
chip has also been applied in a pathology study, and
Wei et al. [107] first reported conditions for the es-
tablishment of a layer of polarized cells, embedded
within the microfluidic device. This system was able
to function as a model of epithelial cells and as an organ
model to study the molecular and pharmacological
theory of calcium phosphate stone formation inside
the epithelium. As great advancements in tech-
niques based on organ-on-a-chip are made, an
extension is to consider the future aspect of body-
on-a-chip technology, which should have a sophisticated
and complicated set of tools for micro-patterning cell
cultures in 3D structure to create interconnected and
interactional multi-organ like structures [108]. Al-
though many achievements have been made,
bioengineering of a fully replicate kidney is not yet
achievable. There is still a long way to go because a
fully functional kidney requires tubular and glomeru-
lus components together with a functional vascular
network tree capable of supporting compartmental-
ized fluid flow.

Three-dimensional printed kidney

Three dimensional bioprinting is novel technology that
uses biomaterials to print the fragile and accurate organ
layer according to specific anatomical positioning [1].
To date, most common printers use pneumatic or

mechanical systems to produce continuous sections
of material. Recently, we have seen some generation
of tissue types, such as tissue-like organ skin [109,110],
whole-organ heart [111] and bone [112]. Until now,
early scientific developments to fabricate a whole-
organ kidney have benefitted from informing patients
on their disease. For example, 3D printing technol-
ogy can be applied as teaching models of renal tumor
localization [113,114]. As 3D printing becomes in-
creasingly more accurate in modeling whole-organ
kidney tissue, it may be used in morphological bio-
engineering applications. Surgical models may use
printing technology to replicate real kidney tissue, pre-
senting experienced urologists with tools for planning
and training purposes [115,116].

Although there is still a long way to go before con-
struction of a functional 3D kidney is feasible, Mu et al.
[117] utilized methods of collagen fibrillogenesis in
a liquid medium to construct 3D vascular networks
using hydrogel, which enabled the replication of oxygen
and nutrient diffusion in a nephron [117]. For the
further clinical application of 3D printing of whole-
organ kidney, there are some obstacles that must be
overcome such as suitable biomaterials, correctly dif-
ferentiated cell types and adequate supply of growth
factors, with the aim of mimicking a native kidney
tissue—like microenvironment [118]. Similar to 3D
printing, four-dimensional (4D) printing is emerg-
ing as an interesting technique, but with the crucial
difference that 4D printing produces products that are
able to adjust themselves according to their surround-
ings, for example, a “dynamic” hydrogel ink against
other static materials [119]. Four-dimensional print-
ing may thus deliver complicated, clearly identified
spatiotemporal anatomical details that may practical-
ly facilitate preoperative planning of surgical strategies
and better replicate the structure of bioengineered
kidney [120].

Conclusions

As the incidence of renal disease increases, the number
of patients entering ESRD becomes greater and the
demand for organ transplantation becomes a press-
ing issue, given the shortage of donor kidneys and the
morbidity and mortality associated with lifetime im-
munosuppression. The first reported successful
recellularization procedure was demonstrated by Ross
et al. [28], and, recently successful recellularization
of a kidney scaffold leading to functional tissue may
hold promise for the future of kidney regenerative med-
icine [4,18,29]. However, there are still many obstacles
to be overcome in kidney bioengineering, and proto-
cols for decellularization and recellularizations must
be further optimized for future clinical application, such
as developing a suitable, systematic and reproducible



method for ensuring structural integrity of the ECM
and vascular tree. In addition, the delivery of oxygen
and nutrients is key for functional maintenance of
highly metabolically active kidneys, and thus the
bioreactor should be optimized according to organ size,
the numbers of cells to be populated and an opti-
mized ratio of oxygen to carbon dioxide. In addition,
the bioreactor culture system should provide an en-
vironment capable of mimicking physiological
conditions, which may include exposure to biophysi-
cal stimuli and shear stress [31]. Other issues including
the selection of cell type, an understanding of each
cell type’s differentiation and proliferation, in addi-
tion to the culture environment necessary to support
a kidney scaffold for the generation of complete single
kidney capable of replicate native kidney function, re-
quires substantial further research. In addition to the
ultimate aim of reducing or even replacing organ trans-
plantation, the use of engineered kidney scaffolds may
have utility in drug toxicology in addition to aug-
menting drug development by personalized medicine
[94]. Thus, the future holds optimism for several areas
of clinical science, and we make look forward to fas-
cinating scientific developments in many functional
disciplines.
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